Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(38): e202307246, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37488928

RESUMEN

Core-shell photoanodes have shown great potential for photoelectrochemical (PEC) water oxidation. However, the construction of a high-quality interface between the core and shell, as well as a highly catalytic surface, remains a challenge. Herein, guided by computation, we present a BiVO4 photoanode coated with ZnCoFe polyphthalocyanine using pyrazine as a coordination agent. The bidirectional axial coordination of pyrazine plays a dual role by facilitating intimate interfacial contact between BiVO4 and ZnCoFe polyphthalocyanine, as well as regulating the electron density and spin configuration of metal sites in ZnCoFe phthalocyanine, thereby promoting the potential-limiting step of *OOH desorption. The resulting photoanode displayed a high photocurrent density of 5.7±0.1 mA cm-2 at 1.23 VRHE . This study introduces a new approach for constructing core-shell photoanodes, and uncovers the key role of pyrazine axial coordination in modulating the catalytic activity of metal phthalocyanine.

2.
Artículo en Inglés | MEDLINE | ID: mdl-35549069

RESUMEN

The photoelectrocatalytic (PEC) oxidation of glycerol into highly value-added products is attractive, but it is extremely challenging to limit the oxidation products to the valuable C3 chemicals. The hole concentration and surface atomic arrangement of a photoanode can be modulated by controlling facet exposure, thus tuning the activity and selectivity. Herein, we report for the first time the formation of a WO3 photoanode with predominant exposure of {202} facets by a secondary hydrothermal method. The photoanode exhibits superior PEC glycerol conversion efficiency, giving an 80% selectivity to glyceraldehyde with a production rate of 462 mmol h-1 m-2. Also, the faraday efficiency for the C3 product reaches 98.6%. We made comparison between the {202} facets and the commonly studied {200} facets using experimental and theoretical methods. It is disclosed that the former enhances not only the adsorption and activation of glycerol via the terminal hydroxyl groups but also the desorption of glyceraldehyde.

3.
Angew Chem Int Ed Engl ; 60(3): 1433-1440, 2021 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-33006403

RESUMEN

The introduction of oxygen vacancies (Ov) has been regarded as an effective method to enhance the catalytic performance of photoanodes in oxygen evolution reaction (OER). However, their stability under highly oxidizing environment is questionable but was rarely studied. Herein, NiFe-metal-organic framework (NiFe-MOFs) was conformally coated on oxygen-vacancy-rich BiVO4 (Ov-BiVO4 ) as the protective layer and cocatalyst, forming a core-shell structure with caffeic acid as bridging agent. The as-synthesized Ov-BiVO4 @NiFe-MOFs exhibits enhanced stability and a remarkable photocurrent density of 5.3±0.15 mA cm-2 at 1.23 V (vs. RHE). The reduced coordination number of Ni(Fe)-O and elevated valence state of Ni(Fe) in NiFe-MOFs layer greatly bolster OER, and the shifting of oxygen evolution sites from Ov-BiVO4 to NiFe-MOFs promotes Ov stabilization. Ovs can be effectively preserved by the coating of a thin NiFe-MOFs layer, leading to a photoanode of enhanced photocurrent and stability.

5.
Nano Lett ; 17(2): 1161-1166, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28098458

RESUMEN

Silicon-based two-dimensional (2D) materials are uniquely suited for integration in Si-based electronics. Silicene, an analogue of graphene, was recently fabricated on several substrates and was used to make a field-effect transistor. Here, we report that when Ru(0001) is used as a substrate, a range of distinct monolayer silicon structures forms, evolving toward silicene with increasing Si coverage. Low Si coverage produces a herringbone structure, a hitherto undiscovered 2D phase of silicon. With increasing Si coverage, herringbone elbows evolve into silicene-like honeycomb stripes under tension, resulting in a herringbone-honeycomb 2D superlattice. At even higher coverage, the honeycomb stripes widen and merge coherently to form silicene in registry with the substrate. Scanning tunneling microscopy (STM) was used to image the structures. The structural stability and electronic properties of the Si 2D structures, the interaction between the Si 2D structures and the Ru substrate, and the evolution of the distinct monolayer Si structures were elucidated by density functional theory (DFT) calculations. This work paves the way for further investigations of monolayer Si structures, the corresponding growth mechanisms, and possible functionalization by impurities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...